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Taxonomy of Generative Models

Deep Generative Models

Autoregressive Flow-based Latent variable = Energy-based
models models models models
(e.g., PixelCNN) (e.g., RealNVP)
Implicit models Prescribed models

(e.g., GANSs) (e.g., VAEs)



The story up till now

* Step 1: We set out with our original goal of learning a model pg that gives
maximum likelihood to our datapoints x;

e Step 2: We introduced latent variables z such that z ~ p(z) and x | z ~ p(x |2),
which gave us the marginalization p(x) = [ p(x |2) p(2) dz

e Step 2a: When we supposed p(z) was Gaussian and p(x |z) = N(Wz + b, 6?I), we could
solve for (W, b, %) in closed form! This gave us PPCA

* Step 3: We set up variational inference because sadly, not everything in life is
Gaussian and linear. This gave us a new objective

p@( Xi )
q (lel)

* Step 3a: If q(z|x) is easy to evaluate, we can aIternate between optimizing w.r.t. 8 with
q(z|x) fixed and vice versa, leading to the Expectation Maximization algorithm

meaxlogpg(xl) meax max ZJq(Zm)log



The story continues with Variational Autoencoders

* Before introducing VAEs formally, let us decompose ELBO further

po(x;, 2)
maxlogpg (x;) = max maXZf (z|x;) log dz
l q(z|x;)
= max Z E lo Pe (x“Z) Evidence Lower Bound (ELBO)
a0 08 gy )
p(2)
= E,. 1
maXE z~qy (2 |x;) OgPH(XL|Z) l/J(Z |xi)

= maxz Ezqyzixp 108D0(Xi|2) + Ezoq,(z1x;) 108 4 (z1x7)

_DKL(%/;(Z|X)||P(Z))



Variational AutoEncoders (VAEs): Setup

e We have three models we need to define for VAE model

1. qy(z |x;) (Inference model): We will define as gy, (z | x;) = N(z; py (x;), Jllzj(x,;)l) i.e.a
normal distribution with learned mean and covariance

y (X)

Inference Model
%(Z | x)
log aj, (x)

Ensures variance is

always positive and

improves stability of
X training!

Datapoint Can be any NN

We will define prior for latent variables as p(z) = N(0,1)



Variational AutoEncoders (VAEs): Setup

e We have three models we need to define for VAE model

3.pp (x| z) (Generative model): We will define as pg(x |z) = N(z;0(2),n?I) i.e. a normal
distribution with learned mean and a constant user-defined variance

- Note this can be defined in many different ways, yielding different models (such as a
categorical distribution over 255 values of each pixel)

Latent Generative Model 0(z)

Z po(x |2)

Can be any NN



Variational Autoencoders: Training

Inference Model Sample Generative Model

0(2)

qy (2 | x;) z ~ N(z |ug(x), a5 (x)I) pe(x | z)

log o2

Datapoint x;

ELBO Objective

Ez~qyz o [108De (x | 2) — KL(qy (2 | x)|Ip(2)]



Variational Autoencoders after Training

 Suppose we have learned VAE using the ELBO loss (details to follow).
* Then, as a generative model, we just sample z ~ p(z) and use the fixed
generative model pg (x |2)

Generative Model Sample

pe(x | 2) x~ N(x |6(2),nI)




Computing the ELBO Loss

Lg w(x) . t _(_|x_1(:8;9Ex_|Z)l+ E,. (z ]| x) logﬂ
Z_qﬂz_)_____ T qy (2 |x)
* Term 1 (Reconstruction Error): Because pg(x |z) = N(x |0(z),nl), we have logpg(x |z) = —% ||x —

2
Go (Z)||2 + constant

* We approximate the expectation over z ~ q,,(z |x) by an average over q,(z |x;) for a dataset of x;’s

Cllp((ZZ|)x) = —Di1(qy(z]0)||p(2)) and gy (z |x) =

N(z |ty (x), oy, 2(x)D),p(z) = N(0,I), the second term is a KL divergence between two Gaussians

. Because EZqu(ZpC) log

* Thankfully, this has a closed form solution for two d-dimensional Gaussians ,
02> d dof + |l —.Uz||2

2 207

KL(N(‘Ul,O'lZI)”N(,UZ, I)) — lOg(

* For us, this becomes

01

2
doy,(x) + “,u¢(x)”

KL(qw(z 1x)||p(2)) = —log (alp(x)) + > 2 + constant




Maximizing ELBO: How to optimize?

* So now we want to solve the following optimization problem:

po(x;,Z)
maXE Loy (x;) = Z E, . log
R -y k) 08 g (7 1x)

* Simple idea: Just alternate gradient ascent wrt 8,y on objective function
oL
Or+1 = Ok +17 50 (O, ¥r)

OL
Yr+1 =Y +1 w Ok, Yi)



Stochastic Optimization of ELBO wrt 6

* [ssue: Computing gradient of ELBO wrt 0 is intractable because there is an
expectation in the gradient!

e Solution: Compute an unbiased estimator
VoLoy(x) = VoE, g, (z|x) [108Pa(x,2) —logqy(z |x)]
= Ez~q¢(z %) Ve log pg (%, 2)

§

Just take sample averages to compute unbiased estimator



Stochastic Optimization of ELBO wrt Y

* Here, we cannot just switch gradient and expectation because both are wrt to Y
VLo (x) = VyE, g,z [108Dg (x, 2) —log gy (2 [x)]
# Ezqy 210 Vyllogpe(x, z) —log gy (z [x)]
* To compute gradient, we will use that q,,(z|x) = N(z; py (x), oy (x)1)
* We can rewrite samples z ~ qy(z |x) as z = py,(x) + oy (x)e fore~ N(0,1)

* This is a change of variables as we rewrite z = g(€,¥, x) = py(x) + oy (x)€
 We can then write Reparameterization

trick!
VIIJLH,IIJ(X) = vl/JEZ’VChp(Z ) [log Do (x’ Z) —_ lOg Q¢(Z |X)] ric
= VyEen(o) [log pg(x,2) — log qlp(z 120)]

riginal for
f Backprop l f /
~ qg(Z[x zZ = X,E

as(2]x) V. f gl¢.x.)
/? N /T \ Just take sample averages to compute unbiased estimator
[} X Vof o X ~ p(e)




Full Algorithm for Stochastic Optimization of ELBO

Algorithm 1: Stochastic optimization of the ELBO. Since
noise originates from both the minibatch sampling and sam-
pling of p(e€), this is a doubly stochastic optimization procedure.
We also refer to this procedure as the Auto-Encoding Varia-
tional Bayes (AEVB) algorithm.
Data:
D: Dataset
94 (z|x): Inference model
pe(x,z): Generative model
Result:
0, ¢: Learned parameters

(0, @) < Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)

€ ~ p(€) (Random noise for every datapoint in M)
Compute E9,¢(M, €) and its gradients V9,¢£~g,¢(M, €)
Update @ and ¢ using SGD optimizer

end




Putting it all together

* Variational Autoencoder
 We modelled inference and generative model as deep networks
* We interpreted ELBO as an expected reconstruction error plus a KL-regularization to prior
* Then, we rewrote the sampling in the latent space using the reparameterization trick
* Finally, we derived stochastic gradient estimates to optimize the ELBO and learn a VAE



VAE’s in Action

Gy (2 |x) = N(z |y (x), 0, (x))
p(z) = N(z|0,1)

Po (x |Z) = Categorical (x |H(Z)) Note this is different from the model considered up till now!

e The encoder network:

x € XP —Linear(D, 256) — LeakyReLU —

Linear(256,2 - M) — split —> u € RM. log o e RM,
* The decoder network:

z € R —Linear(M, 256) — LeakyReLU —

Linear(256, D - L) — reshape — softmax — 6 € [0, I]D XL



VAE’s for Generation of MNIST Digits
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Fig. 4.4 An example of outcomes after the training: (a) Randomly selected real images. (b)
Unconditional generations from the VAE. (¢) The validation curve during training



Typical Issues with VAEs

* ELBO: mp®x) = Ez~qy@w[Inpe (x| 2)] —KL|ay(@ 1% Il p(@)] + KL|ay (21 %) I pg(z | )|

ELBO 20
 Posterior collapse

* If the decoder is so powerful that it treats z as noise, then v,q,(z | x) = p(2)

* Mismatch between prior p(z) and aggregated posterior q4(z) = %Ziqlp (z | x;)

* Prior assigns high probability but aggregated posterior
assigns low probability, or other way around.

* Sampling from such regions provides unrealistic latent values and the decoder produces
images of very low quality.

e Qut-of-distribution samples



Fig. 4.6 An example of the

Agg re gate d p OSte rl O r effect of the cross-entropy
A

optimization with a
Fig. 4.5 An example of the . 1 non-learnable pri(?r. The
ageregated posterior. qQy (z) = N 2.iq Y (z | Xi) aggregated posterior (purple
contours) tries to match the
non-learnable prior (in blue).
The purple arrows indicate

Individual points are encoded
as Gaussians in the 2D latent

Space (magent.a),. and the the change of the aggregated
mixture of variational o) @ .

ter th ted posterior. An example of a
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Learnable prior

Fig. 4.7 An example of the
effect of the cross-entropy
optimization with a learnable
prior. The aggregated
posterior (purple contours)
tries to match the learnable
prior (blue contours). Notice
that the aggregated posterior
1s modified to fit the prior
(purple arrows), but also the
prior 1s updated to cover the
aggregated posterior (orange
arrows)




Improving VAES

* The ELBO consists of two parts: first, the reconstruction error

RE £ Ex-pgaea() [Eqw(zm [Inpg (x| Z)]]

* Then the regularization term between the encoder and the prior

N = IEX"’pdata(X) [[Eqw(zlx) [lnp(z) —In vy (Z | X)]]
= —KL[qy(2) I p(z)] + H[qy (z | x)]

* For a Gaussian, the entropy is maximized when sigma -> infinity



